• Both of the statements in that screenshot are just so inane.

    Frequency has to be maintained on the grid. It’s the sole place where we have to match production and consumption EXACTLY. If there’s no battery or pumped storage storage available to store excess energy, the grid operators have to issue charges to the producers, in line with their contracts, to stop them dumping more onto the grid (increasing the frequency). The producers then start paying others to absorb this energy, often on the interconnectors.

    It’s a marketplace that works (but is under HEAVY strain because there’s so much intermittent production coming online). When was the last time you had a device burning out because the frequency was too high?

    Turning the electricity grid into some kind of allegory about post-scarcity and the ills of capitalism (when in fact it’s a free market that keeps the grid operating well) is just “I is very smart” from some kid sitting in mom and dads basement.

    • Your explanation works very well, but completely falls apart in the last paragraph.

      Solar power production clearly is (at least in part) a post-scarsity scenario, given we literally have too much power on the grid.

      Furthermore, calling the power market anything like “free” is just plain wrong. A liberal approach to market regulation here would have led to disaster a long time ago, for the reasons you described at the beginning of your comment.

      The market “works” because of, not inspite of regulation.

      And negative prices are a good thing for consumers, not market failure.

    • Frequency has to be maintained, and it is trivial to do so when you have excess renewables because inverters are instantly throttle-able. The reason why you’ve never heard about devices failing because frequency is too high is because it is and has always been such a non issue to shutter unneeded generating capacity.

      Typically with fossil fuel plants, when the price drops below the cost of fuel for the least efficient plants they drop offline because they are no longer making a profit on fuel and the price holds. Because renewables have upfront cost to build but are free to run on a day to day basis, when there are a lot of renewables the price signal has to drop all the way to nothing before it is no longer profitable to run them.

      All this means that all that happened was that for a few hours, solar production was actually enough to satisfy demand for that region. Along term, if low wholesale prices can be counted on midday then people will build industry, storage, or HVDC transfer capacity to take advantage of it.

      If these prices are sustained for enough of the day that it is no longer profitable to add more solar farms, then they will stop being built in that area in favor of was to generate power at night such as wind, hydro, and pumped hydro while the panels will instead go to places that still don’t have enough solar to meet demand.

      Also as an aside, the wholesale electricity market in north america is by definition about as far from a free market as it is possible for a free market to be without having exact outside price controls. It is a market built solely out of regulation that only exists at all because the government forced it to exist by making it illegal to not use it, either by making contracts off market or by transmission companies in-houseing production, or use it in any way other than as precisely prescribed by the government.

      Now we can argue whether or not the wholesale electricity market is well or poorly set up or even if it should exist in the first place, but I don’t think that anyone can argue that it is a free market. At least not without defining the term free market so broad that even most of the markets in the USSR qualify as free markets.

      Also, free markets and capitalism are very distinct concepts with no real relation between each other. You might argue that free markets tend to lead towards a capitalist system, but given free markets existed thousands of years before capitalism was invented I don’t think many people would say it was a very strong relationship.

      • There’s a reason why the frequency is exactly 50hz or 60hz, and it’s not “at least 50hz or 60hz”. You can’t just have 55hz on the grid, you’ll destroy half a country.

          • Oh ok, I guess frequency maintenance on the grid isn’t a problem then and all the pumped storage and battery installations can shut and all the grid planners can go home and the spots markets can close and we can just dump as current as we see fit onto the grid and you’re right and I’m wrong.

            • All of that matters, but I think the parent post was only calling out the hospital equipment as a bad example. Like how your keyboard and your SSD don’t care what the grid is doing as long as the PSU can handle it.

              But back to maintaining the frequency on the grid, along with keeping it within tolerance don’t they also have to make sure that the average frequency over time is VERY close to the target? I believe there are devices that use the frequency for timekeeping as well, like some old plug-in alarm clocks.

              • Fair enough. I was getting frustrated because I was trying to make a larger point about the fact that the grid can’t endlessly handle production. At some point the grid has to say “it will cost you to dump this onto the grid”. And suddenly I found myself discussing PSUs. I mean, yes, I’m aware there’s equipment on the grid that can handle different frequencies better than others but I felt we were discussing the bark of a single tree when I was trying to talk about the forest.

                • Also fair enough!

                  It really is a good point you make though. There’s a large balancing act to produce the right amount of power at exactly the time it’s needed. I think in our daily lives, and especially for non-tech/STEM folks, electricity is just taken for granted as always available and unlimited on an individual scale. I think people don’t envision giant spinning turbines when they plug something in, just like they don’t think of racks of computers in a data center when they open Amazon or Facebook.

                  Maybe it will be less like that in a couple decades when there is distributed energy storage all over the grid, including individual homes & vehicles.

        • lol If you think hospitals don’t have managed power systems you shouldn’t be contributing.

          Also lol if you think medical equipment isn’t required to be robust, have you ever read a supply tender spec for a hospital?

        •  uis   ( @uis@lemm.ee ) 
          link
          fedilink
          4
          edit-2
          3 months ago

          But do we agree that not all devices can?

          By not all you mean motors with windings connected to grid? Well, they still will work on higher frequencies, but on higher speed. Real problem is low frequency, not high. Well, 0.5kHz not all devices can handle, but most consumers(even conumer electronics, no pun intended) even rated to 50-60Hz range. So 46-64Hz should be fine for them.

          What about sensitive devices keeping patients alive in hospitals?

          Sensetive devices that can’t handle range bigger than ±0.4Hz? Are you kiddding me? How does that even pass certification?

          Most frequency-sencetive devices are not consumers, but transformers and turbines.