Day 16: The Floor Will Be Lava

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

  •  hades   ( @hades@lemm.ee ) 
    link
    fedilink
    4
    edit-2
    3 months ago

    Python

    53.059 line-seconds (ranks third hardest after days 8 and 12 so far).

    from .solver import Solver
    
    
    def _trace_beam(data, initial_beam_head):
      wx = len(data[0])
      wy = len(data)
      beam_heads = [initial_beam_head]
      seen_beam_heads = set()
      while beam_heads:
        next_beam_heads = []
        for x, y, dx, dy in beam_heads:
          seen_beam_heads.add((x, y, dx, dy))
          nx, ny = (x + dx), (y + dy)
          if nx < 0 or nx >= wx or ny < 0 or ny >= wy:
            continue
          obj = data[ny][nx]
          if obj == '|' and dx != 0:
            next_beam_heads.append((nx, ny, 0, 1))
            next_beam_heads.append((nx, ny, 0, -1))
          elif obj == '-' and dy != 0:
            next_beam_heads.append((nx, ny, 1, 0))
            next_beam_heads.append((nx, ny, -1, 0))
          elif obj == '/':
            next_beam_heads.append((nx, ny, -dy, -dx))
          elif obj == '\\':
            next_beam_heads.append((nx, ny, dy, dx))
          else:
            next_beam_heads.append((nx, ny, dx, dy))
        beam_heads = [x for x in next_beam_heads if x not in seen_beam_heads]
      energized = {(x, y) for x, y, _, _ in seen_beam_heads}
      return len(energized) - 1
    
    
    class Day16(Solver):
    
      def __init__(self):
        super().__init__(16)
    
      def presolve(self, input: str):
        data = input.splitlines()
        self.possible_energized_cells = (
          [_trace_beam(data, (-1, y, 1, 0)) for y in range(len(data))] +
          [_trace_beam(data, (x, -1, 0, 1)) for x in range(len(data[0]))] +
          [_trace_beam(data, (len(data[0]), y, -1, 0)) for y in range(len(data))] +
          [_trace_beam(data, (x, len(data), 0, -1)) for x in range(len(data[0]))])
    
    
      def solve_first_star(self) -> int:
        return self.possible_energized_cells[0]
    
      def solve_second_star(self) -> int:
        return max(self.possible_energized_cells)
    
  • Rust

    I simply check each starting position individually for Part 2, I don’t know if there are more clever solutions. Initially that approach ran in 180ms which is a lot more than any of the previous puzzles needed, so I tried if I could optimize it.

    Initially I was using two hash sets, one for counting unique energized fields, and one for detecting cycles which also included the direction in the hash. Going from the default rust hasher to FxHash sped it up to 100ms. Seeing that, I thought that this point could be further improved upon, and ended up replacing both hash sets with boolean arrays, since their size is neatly bounded by the input field size. Now it runs in merely 30ms, meaning a 6x speedup just by getting rid of the hashing.

  • Nim

    I’m caught up!

    This one was pretty straighforward. Iterate through the beam path, recursively creating new beams when you hit splitters. The only gotcha is that you need a way to detect infinite loops that can be created by splitters. I opted to record energized non-special tiles as - or |, depending on which way the beam was traveling, and then abort any path that retreads those tiles in the same way. I meant to also use + for where the beams cross, but I forgot and it turned out not to be necessary.

    Part 2 was pretty trivial once the code for part 1 was written.

  • Scala3

    This could be much more efficient (and quite a bit shorter), but I wanted to try out the scala-graph library (https://www.scala-graph.org)

    import day10._
    import day10.Dir._
    import scalax.collection.edges.DiEdge
    import scalax.collection.immutable.Graph
    import scalax.collection.edges.DiEdgeImplicits
    import scalax.collection.generic.AnyEdge
    import scalax.collection.generic.Edge
    
    case class Node(ps: Set[Pos])
    
    def getNode(p: Pos, d: Dir) = Node(Set(p, walk(p, d)))
    def connect(p: Pos, d1: Dir, d2: Dir) = List(getNode(p, d1) ~> getNode(p, d2), getNode(p, d2) ~> getNode(p, d1))
    
    def parseGrid(a: List[List[Char]]) = 
        def parseCell(s: Char, pos: Pos) =
            s match
                case '.' => connect(pos, Left, Right) ++ connect(pos, Up, Down)
                case '/' => connect(pos, Left, Up) ++ connect(pos, Right, Down)
                case '\\' => connect(pos, Left, Down) ++ connect(pos, Right, Up)
                case '-' => connect(pos, Left, Right) ++ List(
                    getNode(pos, Up) ~> getNode(pos, Left), getNode(pos, Up) ~> getNode(pos, Right),
                    getNode(pos, Down) ~> getNode(pos, Left), getNode(pos, Down) ~> getNode(pos, Right),
                )
                case '|' => connect(pos, Up, Down) ++ List(
                    getNode(pos, Left) ~> getNode(pos, Up), getNode(pos, Left) ~> getNode(pos, Down),
                    getNode(pos, Right) ~> getNode(pos, Up), getNode(pos, Right) ~> getNode(pos, Down),
                )
                case _ => List().ensuring(false)
            
        val edges = a.zipWithIndex.flatMap((r, y) => r.zipWithIndex.map((v, x) => v -> Pos(x, y))).map(parseCell).reduceLeft((a, b) => a ++ b)
        Graph() ++ edges
    
    def illuminationFrom(p: Pos, d: Dir, g: Graph[Node, DiEdge[Node]], inBounds: Pos => Boolean): Long =
        val es = getNode(p, d.opposite) ~> getNode(p, d)
        val g2 = g + es
        val n = g2.get(getNode(p, d))
        n.outerNodeTraverser.flatMap(_.ps).toSet.filter(inBounds).size
    
    def inBounds(a: List[String])(p: Pos) = p.x >= 0 && p.x < a(0).size && p.y >= 0 && p.y < a.size
    
    def task1(a: List[String]): Long = 
        illuminationFrom(Pos(-1, 0), Right, parseGrid(a.map(_.toList)), inBounds(a))
    
    def task2(a: List[String]): Long = 
        val inits = (for y <- a.indices yield Seq((Pos(-1, y), Right), (Pos(a(y).size, y), Left)))
            ++ (for x <- a(0).indices yield Seq((Pos(x, -1), Down), (Pos(x, a.size), Up)))
    
        val g = parseGrid(a.map(_.toList))
        inits.flatten.map((p, d) => illuminationFrom(p, d, g, inBounds(a))).max
    
  • Haskell

    A pretty by-the-book “walk all paths” algorithm. This could be made a lot faster with some caching.

    Solution
    import Control.Monad
    import Data.Array.Unboxed (UArray)
    import qualified Data.Array.Unboxed as A
    import Data.Foldable
    import Data.Set (Set)
    import qualified Data.Set as Set
    
    type Pos = (Int, Int)
    
    readInput :: String -> UArray Pos Char
    readInput s =
      let rows = lines s
       in A.listArray ((1, 1), (length rows, length $ head rows)) $ concat rows
    
    energized :: (Pos, Pos) -> UArray Pos Char -> Set Pos
    energized start grid = go Set.empty $ Set.singleton start
      where
        go seen beams
          | Set.null beams = Set.map fst seen
          | otherwise =
              let seen' = seen `Set.union` beams
                  beams' = Set.fromList $ do
                    ((y, x), (dy, dx)) <- toList beams
                    d'@(dy', dx') <- case grid A.! (y, x) of
                      '/' -> [(-dx, -dy)]
                      '\\' -> [(dx, dy)]
                      '|' | dx /= 0 -> [(-1, 0), (1, 0)]
                      '-' | dy /= 0 -> [(0, -1), (0, 1)]
                      _ -> [(dy, dx)]
                    let p' = (y + dy', x + dx')
                        beam' = (p', d')
                    guard $ A.inRange (A.bounds grid) p'
                    guard $ beam' `Set.notMember` seen'
                    return beam'
               in go seen' beams'
    
    part1 = Set.size . energized ((1, 1), (0, 1))
    
    part2 input = maximum counts
      where
        (_, (h, w)) = A.bounds input
        starts =
          concat $
            [[((y, 1), (0, 1)), ((y, w), (0, -1))] | y <- [1 .. h]]
              ++ [[((1, x), (1, 0)), ((h, x), (-1, 0))] | x <- [1 .. w]]
        counts = map (\s -> Set.size $ energized s input) starts
    
    main = do
      input <- readInput <$> readFile "input16"
      print $ part1 input
      print $ part2 input
    

    A whopping 130.050 line-seconds!

  • Golang

    Avoided recursion by having an array of “pending paths”. Whenever I hit a splitter, I follow one of the paths straight away, and push the starting point and direction of the other path to the array.

    First time I ran it, hit an infinite loop. Handled it by skipping “|” and “-” if they have been visited already.

    Part 2 is the same code as part 1 but I just check all the possible starting points.

    Code
    package main
    
    import (
    	"bufio"
    	"fmt"
    	"os"
    )
    
    type Direction int
    
    const (
    	UP    Direction = 0
    	DOWN  Direction = 1
    	LEFT  Direction = 2
    	RIGHT Direction = 3
    )
    
    type LightPoint struct {
    	row int
    	col int
    	dir Direction
    }
    
    func solve(A [][]rune, start LightPoint) int {
    	m := len(A)
    	n := len(A[0])
    	visited := make([]bool, m*n)
    	points := []LightPoint{}
    	points = append(points, start)
    
    	for len(points) > 0 {
    		current := points[0]
    		points = points[1:]
    		i := current.row
    		j := current.col
    		dir := current.dir
    
    		for {
    			if i < 0 || i >= m || j < 0 || j >= n {
    				break
    			}
    			if visited[i*n+j] && (A[i][j] == '-' || A[i][j] == '|') {
    				break
    			}
    
    			visited[i*n+j] = true
    
    			if A[i][j] == '.' ||
    				(A[i][j] == '-' && (dir == LEFT || dir == RIGHT)) ||
    				(A[i][j] == '|' && (dir == UP || dir == DOWN)) {
    				switch dir {
    				case UP:
    					i--
    				case DOWN:
    					i++
    				case LEFT:
    					j--
    				case RIGHT:
    					j++
    				}
    				continue
    			}
    
    			if A[i][j] == '\\' {
    				switch dir {
    				case UP:
    					dir = LEFT
    					j--
    				case DOWN:
    					dir = RIGHT
    					j++
    				case LEFT:
    					dir = UP
    					i--
    				case RIGHT:
    					dir = DOWN
    					i++
    				}
    				continue
    			}
    
    			if A[i][j] == '/' {
    				switch dir {
    				case UP:
    					dir = RIGHT
    					j++
    				case DOWN:
    					dir = LEFT
    					j--
    				case LEFT:
    					dir = DOWN
    					i++
    				case RIGHT:
    					dir = UP
    					i--
    				}
    				continue
    			}
    
    			if A[i][j] == '-' && (dir == UP || dir == DOWN) {
    				points = append(points, LightPoint{row: i, col: j + 1, dir: RIGHT})
    				dir = LEFT
    				j--
    				continue
    			}
    
    			if A[i][j] == '|' && (dir == LEFT || dir == RIGHT) {
    				points = append(points, LightPoint{row: i + 1, col: j, dir: DOWN})
    				dir = UP
    				i--
    			}
    		}
    	}
    
    	energized := 0
    	for _, v := range visited {
    		if v {
    			energized++
    		}
    	}
    	return energized
    }
    
    func part1(A [][]rune) {
    	start := LightPoint{row: 0, col: 0, dir: RIGHT}
    	energized := solve(A, start)
    	fmt.Println(energized)
    }
    
    func part2(A [][]rune) {
    	m := len(A)
    	n := len(A[0])
    	max := -1
    
    	for i := 0; i < m; i++ {
    		start := LightPoint{row: i, col: 0, dir: RIGHT}
    		energized := solve(A, start)
    		if energized > max {
    			max = energized
    		}
    		start = LightPoint{row: 0, col: n - 1, dir: LEFT}
    		energized = solve(A, start)
    		if energized > max {
    			max = energized
    		}
    	}
    
    	for j := 0; j < n; j++ {
    		start := LightPoint{row: 0, col: j, dir: DOWN}
    		energized := solve(A, start)
    		if energized > max {
    			max = energized
    		}
    		start = LightPoint{row: m - 1, col: j, dir: UP}
    		energized = solve(A, start)
    		if energized > max {
    			max = energized
    		}
    	}
    
    	fmt.Println(max)
    }
    
    func main() {
    	// file, _ := os.Open("sample.txt")
    	file, _ := os.Open("input.txt")
    	defer file.Close()
    
    	scanner := bufio.NewScanner(file)
    
    	var lines []string
    	for scanner.Scan() {
    		lines = append(lines, scanner.Text())
    	}
    
    	var A [][]rune
    	for _, line := range lines {
    		A = append(A, []rune(line))
    	}
    
    	// part1(A)
    	part2(A)
    }
    
  • C

    Just tracing the ray. When it splits, recurse one way and continue the other. Didn’t bother with a direction lookup table this time, just a few ifs. The ray ends when it goes out of bounds or a ray in that direction has been previously traced on a given cell (this is tracked with a separate table).

    It would’ve been straightforward if I hadn’t gotten the ‘previously visited’ check wrong 😞. I was checking against the direction coming in of the tile but marking the direction going out.

    Ray function:

    static void
    ray(int x, int y, int dir)
    {
    	int c;
    
    	while (x>=0 && y>=0 && x
  • Rust
    use std::fs;
    use std::path::PathBuf;
    
    use clap::Parser;
    
    use rayon::prelude::*;
    
    #[derive(Parser)]
    #[command(author, version, about, long_about = None)]
    struct Cli {
        input_file: PathBuf,
    }
    
    #[derive(Copy, Clone)]
    enum TileState {
        None,
        Energized(BeamState),
    }
    #[derive(Default, Copy, Clone)]
    struct BeamState {
        up: bool,
        down: bool,
        left: bool,
        right: bool,
    }
    
    fn main() {
        // Parse CLI arguments
        let cli = Cli::parse();
    
        // Read file
        let input_text = fs::read_to_string(&cli.input_file)
            .expect(format!("File \"{}\" not found", cli.input_file.display()).as_str());
    
        let tiles: Vec> = input_text.lines().map(|l| l.chars().collect()).collect();
    
        // Part 1
        let part_1 = test_beam(&tiles, (0, 0), (0, 1));
        println!("Part 1: {}", part_1);
    
        // Part 2
        let part_2: usize = (0..4)
            .into_par_iter()
            .map(|dir| {
                (0..tiles.len())
                    .into_par_iter()
                    .map(move |x| (dir.clone(), x))
            })
            .flatten()
            .map(|(dir, x)| match dir {
                0 => ((0, x), (1, 0)),
                1 => ((x, tiles[0].len() - 1), (0, -1)),
                2 => ((tiles.len() - 1, x), (-1, 0)),
                3 => ((x, 0), (0, 1)),
                _ => unreachable!(),
            })
            .map(|(loc, dir)| test_beam(&tiles, loc, dir))
            .max()
            .unwrap();
        println!("Part 2: {}", part_2);
    }
    
    fn test_beam(
        tiles: &Vec>,
        start_location: (usize, usize),
        start_direction: (i64, i64),
    ) -> usize {
        let mut energized: Vec> =
            vec![vec![TileState::None; tiles[0].len()]; tiles.len()];
    
        continue_beam(
            &mut energized,
            &tiles,
            start_location,
            start_direction,
            true,
            0,
        );
        energized
            .iter()
            .map(|r| {
                r.iter()
                    .filter(|t| matches!(t, TileState::Energized(_)))
                    .count()
            })
            .sum()
    }
    
    fn continue_beam(
        energized: &mut Vec>,
        tiles: &Vec>,
        beam_location: (usize, usize),
        beam_direction: (i64, i64),
        start_hack: bool,
        depth: usize,
    ) {
        assert_ne!(beam_direction, (0, 0));
    
        // Set current tile to energized with the direction
        let current_state = energized[beam_location.0][beam_location.1];
        if !start_hack {
            energized[beam_location.0][beam_location.1] = match current_state {
                TileState::None => TileState::Energized(match beam_direction {
                    (0, 1) => BeamState {
                        right: true,
                        ..BeamState::default()
                    },
                    (0, -1) => BeamState {
                        left: true,
                        ..BeamState::default()
                    },
                    (1, 0) => BeamState {
                        down: true,
                        ..BeamState::default()
                    },
                    (-1, 0) => BeamState {
                        up: true,
                        ..BeamState::default()
                    },
                    _ => unreachable!(),
                }),
                TileState::Energized(state) => TileState::Energized(match beam_direction {
                    (0, 1) => {
                        if state.right {
                            return;
                        }
                        BeamState {
                            right: true,
                            ..state
                        }
                    }
                    (0, -1) => {
                        if state.left {
                            return;
                        }
                        BeamState {
                            left: true,
                            ..state
                        }
                    }
                    (1, 0) => {
                        if state.down {
                            return;
                        }
                        BeamState {
                            down: true,
                            ..state
                        }
                    }
                    (-1, 0) => {
                        if state.up {
                            return;
                        }
                        BeamState { up: true, ..state }
                    }
                    _ => unreachable!(),
                }),
            };
        }
    
        // energized[beam_location.0][beam_location.1] = TileState::Energized(BeamState { up: , down: , left: , right:  });
    
        let next_beam_location = {
            let loc = (
                (beam_location.0 as i64 + beam_direction.0),
                (beam_location.1 as i64 + beam_direction.1),
            );
    
            if start_hack {
                beam_location
            } else if loc.0 < 0
                || loc.0 >= tiles.len() as i64
                || loc.1 < 0
                || loc.1 >= tiles[0].len() as i64
            {
                return;
            } else {
                (loc.0 as usize, loc.1 as usize)
            }
        };
        let next_beam_tile = tiles[next_beam_location.0][next_beam_location.1];
    
        let next_beam_directions: Vec<(i64, i64)> = match next_beam_tile {
            '.' => vec![beam_direction],
            '/' => match beam_direction {
                (0, 1) => vec![(-1, 0)],
                (0, -1) => vec![(1, 0)],
                (1, 0) => vec![(0, -1)],
                (-1, 0) => vec![(0, 1)],
                _ => unreachable!(),
            },
            '\\' => match beam_direction {
                (0, 1) => vec![(1, 0)],
                (0, -1) => vec![(-1, 0)],
                (1, 0) => vec![(0, 1)],
                (-1, 0) => vec![(0, -1)],
                _ => unreachable!(),
            },
            '|' => match beam_direction {
                (0, 1) => vec![(1, 0), (-1, 0)],
                (0, -1) => vec![(1, 0), (-1, 0)],
                (1, 0) => vec![(1, 0)],
                (-1, 0) => vec![(-1, 0)],
                _ => unreachable!(),
            },
            '-' => match beam_direction {
                (0, 1) => vec![(0, 1)],
                (0, -1) => vec![(0, -1)],
                (1, 0) => vec![(0, 1), (0, -1)],
                (-1, 0) => vec![(0, 1), (0, -1)],
                _ => unreachable!(),
            },
            _ => unreachable!(),
        };
    
        for dir in next_beam_directions {
            continue_beam(energized, tiles, next_beam_location, dir, false, depth + 1);
        }
    }
    

    26.28 line-seconds