• Nim. Small compiler, small executables, easy to understand (except the macros, I still can’t get my head around them).

    FreePascal. Yeah yeah, Pascal’s dead, etc etc, but it being so verbose and strict certainly help programmers (or at least me) keeping things somewhat tidy.

    Also shoutout to V

  • C++, with some Skill

    /s

    but seriously, I don’t know any language with a good, C/Cpp-like Syntax (so not Rust), with a good compiler (again not Rust). So I’m sticking to Cpp.

  • With no context, this could be an honest attempt to learn about different tools, a thinly veiled set-up to promote a specific language, or an attempt to stir up drama. I can’t tell which.

    It’s curious how such specific conditions are embedded into the question with no explanation of why, yet “memory safe” is included among them without specifying what kind of memory safety.

    • Yeah, arguably the only answer to this question is Rust.

      Java/C#/etc. are not fully compiled (you do have a compilation step, but then also an interpretation step). And while Java/C#/etc. are memory-safe in a single-threaded context, they’re not in a multi-threaded context.

        • I don’t know much about C++, but how would that do memory safety in a multi-threaded context? In Rust, that’s one of the things resolved by ownership/borrowing…

          Or are you saying arguably, as in you could argue the definition of the categories to be less strict, allowing C++ as well as Java/C#/etc. to match it?

          • Because you would be using std::shared_ptr<> rather than a raw pointer, which will automatically deallocate the memory when a shared point leaves the scope in the last place that it’s used in. Along with std::atmoic implements static functions that can let you acquire locks and behave like having a mutex.

            Now this isn’t enforced at the compiler level, mostly due to backwards compatibility reasons, but if you’re writing modern c++ properly you wouldn’t run into memory safety issues. If you consider that stretching the definition then I guess I am.

            Granted rust does a much better job of enforcing these things as it’s unburdened by decades of history and backwards compatibility.

        • I mean, yeah, valid point. JVM languages also have GraalVM for that purpose.

          But I’m playing devil’s advocate here. 🙃

          Arguably these don’t count, because they’re not the normal way of using these languages. Reflection isn’t properly supported in them, for example, so you may not be able to use certain libraries that you’d normally use.

          These also still require a minimal runtime that’s baked into the binary, to handle garbage collection and such.
          Personally, I enjoy fully compiled languages, because they generally don’t lock you into an ecosystem, i.e. you can use them to create a library which can be called from virtually any programming language, via the C ABI.
          You cannot do that with a language that requires a (baked-in) runtime to run.

          But yeah, obviously someone just specifying “compiled” probably won’t have all these expectations…

          •  nous   ( @nous@programming.dev ) 
            link
            fedilink
            English
            522 hours ago

            I don’t think data races are generally considered a memory safety issue. And a lot of languages do not do much to prevent them but are still widely considered memory safe.

            • Yeah, that is why I prefixed that whole comment with “arguably”.

              I feel like the definition of memory safety is currently evolving, because I do think data races should be considered a memory safety issue.
              You’ve got a portion of memory and access to it can be done wrongly, if the programmer isn’t careful. That’s what memory safety is supposed to prevent.

              Rust prevents that by blocking you from passing a pointer for the same section of memory into different threads, unless you use a mutex or similar.
              And because Rust sets a new safety standard, I feel like we’ll not refer to Java and such as “memory-safe” in twenty years, much like you wouldn’t call a car from the 90s particularly safe, even though it was at the time.

              • There’s a reason why data races aren’t considered a memory safety issue, because we have a concept that deals with concurrency issues - thread safety.

                Also for all it’s faults, thread and memory safety in java aren’t issues. In fact java’s concurrent data structures are unmatched in any other programming language. You can use the regular data structures in java and run into issues with concurrency but you can also use unsafe in rust so it’s a bit of a moot point.

                • Oof, I guess, you’re not wrong that we’ve defined data races to be the separate issue of thread safety, but I am really not a fan of that separation.

                  IMHO you cannot cleanly solve thread safety without also extending that solution to the memory safety side.
                  Having only one accessor for a portion of memory should just be the n=1 case of having n accessors. It should not be the other way around, i.e. that multiple accessors are the special case. That just leads you to building two different solutions, and to thread safety being opt-in.

                  That’s also the major issue I have with Java’s solution.
                  If you know what you’re doing, then it’s no problem. But if you’ve got a junior hacking away, or you’re not paying enough attention, or you just don’t realize that a function call will take your parameter across thread boundaries, then you’re fucked.
                  Well, unless you make everything immutable and always clone it, which is what we generally end up doing.

  • Crystal, but only because I’m a full time Ruby on Rails (and sometimes Hanami!) programmer.

    It’s fantastic, and I had an excuse to use it at work when we needed to gather PHP Watchdog logs from a MySQL database and format, output them to STDOUT in a Kubernetes environment. (This was necessary for our log monitoring tools expecting data in a standard way, AKA not connecting to a database. 🤦‍♂️)

    I know there are perhaps better options out there (Go, Rust, etc.) but from a Rubyist’s point of view Crystal gives you that “flow” from working in a beautiful language but with the performance boost of compiled software.

  • You forgot that beauty - “undefined behavior”!

    Memory-safety can guarantee only so much safety! C++ can still blow up in your face, even with all the alleged memory-safety built into C++, thanks to all the UB traps in C and C++.

    Rust is the closest language that has no such “gotchas”.

      • I’ve recently been trying to learn OCaml and find it really nice. The major pain points are

        • C-style separate compilation with manually created headers
        • Small standard library
        • No generic print function
        • Hard to use external libraries
  •  demesisx   ( @demesisx@infosec.pub ) 
    link
    fedilink
    English
    13
    edit-2
    12 hours ago

    As others have said, Haskell and Rust are pretty great. A language that hasn’t been mentioned that I REALLY want to catch on, though, is Unison.

    Honorable mention to my main driver lately: Purescript

  • Ada, hands down. Every time I go to learn Rust I’m disappointed by the lack of safety. I get that it’s miles ahead of C++, but that’s not much. I get that it strikes a much better balance than Ada (it’s not too hard to get it to compile) but it still leaves a lot to be desired in terms of safe interfacing. Plus it’s memory model is more complicated than it needs to be (though Ada’s secondary stack takes some getting used to).

    I wonder if any other Ada devs have experience with rust and can make a better comparison?

    • I have done quite a bit of C, C++, Ada, and Pascal development. I recently got into Rust. I am still getting used to Rust, but it feels a bit like someone tried to apply Ada to C++. I like the modern development environment, but I am slower writing code than I would be in Ada or C++. The one feature of Ada that I really like and want other languages to adopt is the Rep spec. I write driver code and being able to easily and explicitly identify which symbol corresponds to which bit is really good.