My first experience with Lemmy was thinking that the UI was beautiful, and lemmy.ml (the first instance I looked at) was asking people not to join because they already had 1500 users and were struggling to scale.

1500 users just doesn’t seem like much, it seems like the type of load you could handle with a Raspberry Pi in a dusty corner.

Are the Lemmy servers struggling to scale because of the federation process / protocols?

Maybe I underestimate how much compute goes into hosting user generated content? Users generate very little text, but uploading pictures takes more space. Users are generating millions of bytes of content and it’s overloading computers that can handle billions of bytes with ease, what happened? Am I missing something here?

Or maybe the code is just inefficient?

Which brings me to the title’s question: Does Lemmy benefit from using Rust? None of the problems I can imagine are related to code execution speed.

If the federation process and protocols are inefficient, then everything is being built on sand. Popular protocols are hard to change. How often does the HTTP protocol change? Never. The language used for the code doesn’t matter in this case.

If the code is just inefficient, well, inefficient Rust is probably slower than efficient Python or JavaScript. Could the complexity of Rust have pushed the devs towards a simpler but less efficient solution that ends up being slower than garbage collected languages? I’m sure this has happened before, but I don’t know anything about the Lemmy code.

Or, again, maybe I’m just underestimating the amount of compute required to support 1500 users sharing a little bit of text and a few images?

  • The numbers are a little higher than you mention (currently ~3.2k active users). The server isn’t very powerful either, it’s now running on a dedicated server with 6 cores/12 threads and 32 gb ram. Other public instances are using larger servers, such as lemmy.world running on a AMD EPYC 7502P 32 Cores “Rome” CPU and 128GB RAM or sh.itjust.works running on 24 cores and 64GB of RAM. Without running one of these larger instances, I cannot tell what the bottleneck is.

    The issues I’ve heard with federation are currently how ActivityPub is implemented, and possibly the fact all upvotes are federated individually. This means every upvote causes a federation queue to be built, and with a ton of users this would pile up fast. Multiply this by all the instances an instance is connected to and you have an exponential increase in requests. ActivityPub is the same protocol used by other federated servers, including Mastodon which had growing pains but appears to be running large instances smoothly now.

    Other than that, websockets seem to be a big issue, but is being resolved in 0.18. It also appears every connected user gets all the information being federated, which is the cause for the spam of posts being prepended to the top of the feed. I wouldn’t be surprised if people are already botting content scrapers/posters as well, which might cause a flood of new content which has to get federated which causes queues to back up; this is mostly speculation though.

    As it goes with development, generally you focus on feature sets first. Optimization comes once you reach a point a code-freeze makes sense, then you can work on speeding things up without new features breaking stuff. This might be an issue for new users temporarily, but this project wasn’t expecting a sudden increase in demand. This is a great way to show where inefficiencies are and improve performance is though. I have no doubt these will be resolved in a timely manner.

    My personal node seems to use minimal resources, not having even registered compared to my other services. Looking at the process manager the postgres/lemmy backend/frontend use ~250MB of RAM.

    For now, staying off lemmy.ml and moving communities to other instances is probably best. The use case of large instances anywhere near the scale of reddit wasn’t the goal of the project until reddit users sought alternatives. We can’t expect to show up here and demand it work how we want without a little patience and contributing.

    •  glorbo   ( @glorbo@lemmy.one ) 
      link
      fedilink
      English
      421 year ago

      Yup was just typing a comment to basically this effect. Federation adds a ton of overhead – you can still do things fairly efficiently, but every interaction having to fan out to (and fan in from!) many servers instead of like a single RDBMS is gonna cost you.

      In all likelihood the code is not as efficient as it could be, but usually you get time to work those out gradually. A giant influx of users quickly turns “TODO: fix in the next six months” into “Oh god the servers are melting fuck fuck.”

      That said, assuming the devs can get over this hump, I suspect using a compiled language will pay off long-term. Sure things will still be primarily IO-bound, but making things less CPU-bound is usually a good thing.

      For some illustrative examples: Mastodon is in Ruby and hits dumb scaling limitations far more often than other fedi microblogs. Pleroma/Akkoma are Elixir (and BEAM is super well optimized for fast message passing/scaling/IO), Calckey (primarily Typescript) is moving some code to Rust, GoToSocial (Golang) is able to run in a fraction of the resources of Mastodon. The admins of one of the bigger tech instances recently announced they’re basically giving up on administrating Mastodon and are instead going to write a new server from scratch in a compiled language because it’s easier for them than scaling a Rails monolith.

      TL;DR everything is IO-bound til it’s not.

    • I’m pretty sure the fediverse needs a new kind of node at some point. If we assume, that almost every larger instance is connected to almost every other larger instance directly, then there’s a ton of duplicated and very small messages.

      There needs to be some kind of hub in-between to aggregate and route this avalanche. Especially if, like you wrote, every upvote is a message, the overhead (I/O, unmarshalling, etc) is huge.

        • Not a single hub, multiple ones.

          Anyone can host a hub, federated instances can negotiate the intersection of hubs they both trust and then send traffic that way. That could mean, a single comment might be sent to, say, five hubs and each hub then forwards to 50 instances or so.

          Since the hubs are rather simple, they can scale very easily and via cryptographic ratchets, all instances can make sure, they received the correct messages.

        • O(n*n) isn’t really scalable, so you either

          a - have a small number of nodes total

          b - have a small number of hubs with a larger number of leaf nodes.

          Either way, there’s going to be some nodes that become more influential than others.

      • This is kinda how Usenet worked (well, still does). Rather than n*n federated connections, smaller providers tend to federate with central hubs that form backbones.

        I think it makes sense for the fediverse as well.

      • An old Chromebox G1 (i7-4600U and 8GB of ram) with a 128GB internal NGFF and external 1TB NVMe. It’s by no means powerful or expensive hardware. I’m also only receiving federated posts for my subscribed communities, and sending out these comments I write so it’s a lot lower workload than the larger instances.

        •  jadero   ( @jadero@lemmy.ca ) 
          link
          fedilink
          English
          61 year ago

          Hosting a personal instance is the direction I want to go. That’ll be a winter project, though. It’s fishing/swimming/rowing/woodworking season now :)

          Are there any general tips or hidden dangers you can share? Or is it as straightforward as just putting my nose into documentation and playing around a bit?

          • Right now there appears to be no more danger than hosting anything else. I run my services behind a reverse proxy to insulate my home LAN from the wider internet, but hooking anything up to the internet comes with potential dangers.

            I personally wrote a helm chart for kubernetes to host the service, and a few more can be found here. I have some work to do yet on the helm chart but it closely mirrors the docker-compose file provided by the developers. Deployment of an instance should be a lot easier soon, with all the increased interest and contributions.

  • I would say that it’s extremely unlikely.

    Websites in general are never limited by raw code execution, they are mostly limited by IO. Be that disk IO as files are read and written, database IO as you need to execute complex queries to gather all the data to build the user timeline, and network IO to transfer data to and from the user. For decentralized social media like Kbin or Lemmy its even more IO limited as each instance needs to go back and forth to other instances to keep up-to-date data.

    Websites usually benefit much more from caching and in-memory databases to keep frequently used data in fast storage.

    This is why simple, high level, object oriented, garbage collected languages have become so common. All the CPU performance penalties they incur don’t actually affect the website performance.

    • Not relevant to lemmy (yet), but this does break down a bit at very large scales. (Source: am infra eng at YouTube.)

      System architecture (particularly storage) is certainly by far the largest contributor to web performance, but the language of choice and its execution environment can matter. It’s not so important when it’s the difference between using 51% and 50% of some server’s CPU or serving requests in 101 vs 100 ms, but when it’s the difference between running 5100 and 5000 servers or blocking threads for 101 vs 100 CPU-hours per second, you’ll feel it.

      Languages also build up cultures and ecosystems surrounding them that can lend themselves to certain architectural decisions that might not be beneficial. I think one of the major reasons they migrated the YouTube backend from Python to C++ isn’t really anything to do with the core languages themselves, but the fact that existing C++ libraries tend to be way more optimized than their Python equivalents, so we wouldn’t have to invest as much in developing more efficient libraries.

      • It is fairly relevant to lemmy as is. Quite a few instances have ram constraints and are hitting swap. Consider how much worse it would be in python.

        Currently most of the issues are architectural and can be fixed with tweaking how certain things are done (i.e., image hosting on an object store instead of locally).

    •  th3raid0r   ( @th3raid0r@tucson.social ) 
      link
      fedilink
      English
      8
      edit-2
      1 year ago

      In lemmy’s case, my perusal of the DB didn’t really suggest that the queries would be that complex and I suspect that moving it to a higher performance NoSQL DB might be possible, but I’d have to take a look at a few more queries to be sure.

      I wonder if this could be made to work with Aerospike Community Edition…

      Obviously it could be more effort than it’s worth though.

      • The issues I’ve seen more are around images. Hosting the images on an object store (cloudflare r2, s3) and linking there would reduce a lot of federation bandwidth, as that’s probably cause higher ram/swap usage too.

        pict-rs supports storing in object stores, but when getting/serving images, it still serves through the instance as the bottleneck IIRC. That would do quite a bit to free up some resources and lower overall IO needed by the server.

      • Ehhhhhhh. Using a relational database for Lemmy was certainly a choice, but I don’t think it’s necessarily a bad one.

        Within Lemmy, by far the most expensive part of the database is going to be comment trees, and within the industry the consensus on the best database structure to represent these is… well, there isn’t one. The efficiency of this depends way more on how you implement it within a given database model than on the database model itself. Comment trees are actually a pretty difficult problem; you’ll notice a lot of platforms have limits on comment depth, and there’s a reason for that. Getting just one level of replies to work efficiently can be tricky, regardless of the choice of DBMS.

        Looking at the schema Lemmy uses, I see a couple opportunities to optimize it down the road. One of the first things I noticed is that comment replies don’t seem to be directly related back to the top-level post, meaning you’re restricted to a breadth-first search of the comment tree at serving time. Most comments will be at pretty shallow depths, so it sometimes makes sense to flatten the first few levels of this structure so you can get most relevant comments in a single query and rebuild the tree post-fetching. But this makes nomination (i.e. getting the “top 100” or whatever comments to show on your page) a lot more difficult, so it makes sense that it’s currently written the way it is.

        If it’s true (as another commenter said) that there’s no response caching for comment queries, that’s a much bigger opportunity for optimization than anything else in the database.

    • That’s correct. I wonder if YouTube still uses Python to this day (seems like they migrated to C++?)

      Not saying there isn’t a difference in language performance, but for most world problems the architecture and algorithms matter more than the language for performance. Unless you’re in a very constrained environment such as lower end smartphones or embedded systems.

  • Hi, programming.dev owner here. From what I’ve been seeing it’s a lot of memory issues. We were hitting swap which was causing massive disk io. You can see what happened with the disk io immediately after the upgrade to more memory. I know at least one reason is being resolved in this PR

    We were also having issues with the nginx config. There were some really weird settings that I don’t think were necessary. Finally, the federation is quite busy. So if someone subscribes to events from 10 different servers, we pull in every single event, even upvotes. There’s currently a lot of work being done around this stuff.

    I don’t think Rust is the problem. I think it’s just a growth thing. Every platform has growth challenges, things grow in ways that you never expect. You might have thought that it was going to be IO constrained due to the federation, but in reality it’s memory constrained because memory is actually the most expensive thing to have on a server. etc.

    • So if someone subscribes to events from 10 different servers, we pull in every single event, even upvotes. There’s currently a lot of work being done around this stuff.

      You mean like coalescing multiple events into a single message, or…? (I don’t know anything about ActivityPub, so apologies if this is a stupid question!)

    • Any reason to use nginx versus something like Envoy? Like, I really like nginx, but Envoy’s xDS API is really great for on-the-fly changes. I also think it might scale better and have more relevant default values. I’m just not sure if Lemmy ties into nginx in some way, or if you’re purely using it as a reverse proxy.

      I’ll note that most of my Envoy experience is from using it with k8s and a custom ingress controller, where my org handles millions of requests per second (across many Envoy pods). Deploying it standalone might make it less fun.

  • One benefit of using rust for webservers in general is that it’s possible to have a consistently lower latency compared to GCd langues: discord mentions this in their article about migrating to rust from go: https://discord.com/blog/why-discord-is-switching-from-go-to-rust

    Another difference between rust and e.g. python is that rust expects you to invest more time to get code that’s runnable in the first place, but likely more well optimized and correct.

    In my experience from writing rust, the language pushes you to write more efficient code compared to python because it makes things like copying visible and also because it’s easier to reason about memory usage compared to garbage collection which means that you’re more likely to have a useful model of the performance cost of various things while you’re programming.

    It’s possible that a hypothetical lemmy written in python would have allowed the devs to do some big picture optimizations that they haven’t had the time to do yet in the rust version, so for the time being it might be slower than a python alternative.

    Rust is likely to catch up though: eventually the rust version will probably also have this optimization while the python version has to resort to make smaller optimizations that the rust version already had in the first version of the code or that you get for free from the language.

    • I would like to point out that this article from Discord could be considered outdated these days. This comparison is using a old version of Go, that in recent years got a optimization on the GC and now would have much lower spikes than those showed in the article

      Still, Rust surely will give you a higher performance and lower latency than Python

    • One benefit of using rust for webservers in general is that it’s possible to have a consistently lower latency compared to GCd langues: discord mentions this in their article about migrating to rust from go: https://discord.com/blog/why-discord-is-switching-from-go-to-rust

      What about the user problem that Lemmy is solving requires such low latency? Discord is a real time chat service. Lemmy is not. Not saying the overall performance improvements (ie: cost to run an instance) aren’t in Rust’s favor but pointing to latency seems odd to me.

  • Hear me out, but I believe that using Rust holds Lemmy back.

    Writing Rust code is difficult, and fairly time consuming. It’s difficult to get right, and as other commenters have noted, Lemmy code seems to do a lot of things for the “hype factor” (like Websockets). It’s difficult to find enough devs as well.

    The article about Discord switching to Rust from Go in the top comment is misleading in my opinion. They totally rearchitected their service while rewriting it, so it’s an apples to oranges comparision.

    • On the other hand, Rust is fairly resilient. The issues Lemmy is experiencing wouldn’t be fixed in Python vs Java, it’s more of an architectural constraint. Those issues, experienced devs can fix mostly regardless of language.

      •  psudo   ( @psudo@beehaw.org ) 
        link
        fedilink
        English
        11 year ago

        I mean most CS courses don’t teach you to code or what a project should look like. It’s why the mentality in most professional work is to pretty much forget everything you learned in college and you’ll be trained on the job.

    • I think you are getting things backwards… Learning to write rust might be hard, if you are not used to typed languages or languages with explicit memory management with stack/heap separation. However, writing rust is not hard. It might take slightly longer in the coding phase, since you are forced to do things correct, you need to handle errors and are not allowed to share data between threads in dangerous ways aso. But that makes the resulting software a lot better, which means that the testing and support is a lot less. So, if anything, the net result of writing software in rust is that it is easier, since you are not allowed to shoot your self in the foot over and over again.

      And remember, that every time rust is making your life difficult, you might have introduced a subtle bug in another language.

    • The only issue I had with Rust is missing libraries.

      Whenever I have to go back to Python, a language I used for over 10 years, my productivity goes down.

      Rust is by far the best language I worked with and after going through the CS curriculum in uni, learning Rust taken a few hours here in there in my free time.

  • What makes you think that inefficient rust is slower than efficient Python? I mean, sure it could be possible if you are actively trying to make rust slow, but rust is multiple order of magnitude faster than python. If rust was to blame here then I don’t think any language could be fast enough.

    • What makes you think that inefficient rust is slower than efficient Python?

      Well of course it can be. Performance issues are very often algorithmic rather than from execution efficiency.

      Rust won’t make it slow for sure, but it’s not enough to ensure it’s fast.

    •  Buttons   ( @Buttons@programming.dev ) OP
      link
      fedilink
      English
      8
      edit-2
      1 year ago

      Rust is not to blame, but that code that has been written in Rust might be to blame.

      The algorithms used have more effect than the language used, and Rust might make using certain algorithms more painful and thus steer programmers towards less efficient algorithms. Using clone is often an example of this, it’s a little easier and gets around some borrow checker difficulties. (This is true in general, but I don’t know if this is what has happened with Lemmy.)

      Look at salvo [diesel] coming it at #200+ on this benchmark1, lots of programming languages have at least one framework that is faster on the microbenchmark. This isn’t especially meaningful, but it does show that, let’s say, a feature rich framework in Rust might end up being slower than a Python framework that’s laser focused on the specific use case.

      • There’s a catch here, something I read someone mention on Hacker News and I agree. Python is easy when you don’t care about performance; the moment you need to worry about it, all the easiness gets thrown away.

        •  Buttons   ( @Buttons@programming.dev ) OP
          link
          fedilink
          English
          3
          edit-2
          1 year ago

          Everything is easy when you don’t care about performance.

          Have you ever used py-spy? It’s an excellent profiler for Python code (written in Rust 😉). It can attach to a running process and tell you what line is taking the most time. Seems pretty easy to me. (Which is not to say Python can achieve optimal C speed.)

          I don’t think there’s such an easy profiling tool for C or Rust? But I’d be happy to be proven wrong here.

          Go solve 20 or 30 Project Euler problems. All of them are solvable in less than a second using Python (or any language). Write your solutions in C or Rust and you will soon see that a naive or brute-force solution in Rust will literally never finish (the heat death of the universe will come first), but a clever and efficient solution in Python takes less than a second.

          This is why I say algorithms matter more than language. There’s like 2 or 3 orders of magnitude to be had by choosing the fastest language (which is to say, Rust might be 1000 times faster than Python in some cases), but there’s like 10 or 20 orders of magnitude to be saved using the right algorithms sometimes.

  • When it comes to architecture I’m not a genius, but I think a lot of how federation works is tough.

    Plus, even if you have a perfectly efficient backend it can only handle so much based on the hardware you’re running on. “Struggling to scale” can just mean “struggling to afford better hardware.”

  • I’m not convinced using rust is all that useful for web development. There are already plenty of other mature well optimized solutions for backend web development that includes a lot of security, qol features ootb like mature orm’s with optimized database access which regardless of how fast your code is can bottleneck your site much faster if you don’t have smart database access.

    Yeah, theoretically rust can be faster than ruby/python/node, but it’s harder to optimize it enough to get to that point and you will have a much harder time finding devs to work on such a project because the amount of backend devs that have enough rust experience is so small, they’re like on the opposite sides of the ven diagram of languages for web developers.

    On top of all that, languages which are heavily used for web development often get low level optimizations baked into the frameworks/languages so you can get pretty amazing performance uplifts over time to bring it to the level of lower level languages.

  • I agree, hearing about scaling issues so early into adoption is concerning. Lemmy advocates say “horizontal scaling is already built in! just add more instances!”, but that doesn’t explain the problem.

    It’s all just text! By my guess too, handling text alone a server should easily support a thousand concurrent users, and hundreds of thousands of daily users. A RasPI should handle thousands. I’ve heard the bottleneck is the database? In that case Rust is not to blame, Postgres is.

    But my fear is that the data structures are implemented in a trivial way. If you have a good reddit-sized thread with a thousand comments, but you store each comment as a separate database entry, then every pageview will trigger a thousand database lookups! The way I imagined making a reddit clone is that I would store the comments as a flat list with some tree data on top, such that serving a single page with 1000 comments is no different that streaming a 100K text file. I’ll go take a look how Lemmy does it currently once I get the courage!

    • If you have a good reddit-sized thread with a thousand comments, but you store each comment as a separate database entry, then every pageview will trigger a thousand database lookups!

      No it wouldn’t, that’s called the N+1 query problem and it can be avoided by writing more efficient queries

      • Could you explain more how this works? I see how you should be reducing the number of SQL queries from N+1:

        SELECT p.comment_ids FROM posts p WHERE p.post_id = 79
        -> (5, 13, 42, 57)
        SELECT c.text FROM comments c WHERE c.comment_id = 5
        SELECT c.text FROM comments c WHERE c.comment_id = 13
        SELECT c.text FROM comments c WHERE c.comment_id = 42
        SELECT c.text FROM comments c WHERE c.comment_id = 57
        

        down to 1 query:

        SELECT c.text FROM comments c WHERE c.parent_post = 79
        

        (Or something like this, I don’t know SQL sorry). But wouldn’t the database still have to lookup each comment line record on the backend? Yes, they are all indexed and hashed, but if you have a thousand comments, or even ten thousand (that reddit handles perfectly fine!) - isn’t 10000 fetches from a hashtable still slower than fetching a 10000-long array? And what if you’ve been running your reddit clone for years and accumulated so many gigs of content that they don’t fit in memory and have to be stored on disk. Aren’t you looking at 10000 disk reads in worst case scenario with a hashtable?

        • You’ve got the right idea with your SQL example, that’s pretty much exactly what N+1 would look like in your query logs.

          This can happen when using an ORM, if you’re not careful to avoid it. Many ORMs will query the database on attribute access, in a way that is not particularly obvious:

          
          class User:
            id: int
            username: str
          
          class Post:
            id: int
          
          class Comment:
            id: int
            post_id: int  # FK to Post.id
            author_id: int  # FK to User
           
          

          Given this simple python-ish example, many ORMs will let you do something like this:

          
          post = Post.objects.get(id=11)
          
          for comment in post.comments:  # SELECT * FROM comment WHERE post_id=11
              author = comment.author  # uh oh! # SELECT * FROM user WHERE id=comment.author_id
          

          Although comment.author looks like a simple attribute access, the ORM has to issue a DB query behind the scenes. As a dev, especially one learning a new tool, it’s not particularly obvious that this is happening, unless you’ve got some query logging that you’re likely to notice during development.

          A couple of fixes are possible here. Some ORMs will provide some method for fetching the comments via JOIN in the initial query. e.g. post = Post.objects.get(id=11).select_related("comments") instead of just post = Post.objects.get(id=11). Alternately, you could fetch the Post, then do another query to grab all the comments. In this toy example, the former would almost certainly be faster, but in a more complex example where you’re JOINing across multiple tables, you might try breaking the query up in different ways if you’re really trying to squeeze out the last drop of performance.

          In general, DB query planners are very good at retrieving data efficiently, given a reasonable query + the presence of appropriate indexes.

        • @TauZero you would use a join so that one call would fetch all comment rows for that post:

          `SELECT p.post_id, p.title, p.description, c.text

          FROM posts p JOIN comments c ON p.post_id = c.post_id

          WHERE p.post_id = 79`

          This would return a list of all comments for post 79, along with the post id, title, and description also in every row. This isn’t a perfect example of optimized SQL, and I have no idea if these are the correct table and field names, as I didn’t look them up. But it’s a simple example of joins.

        •  Kogasa   ( @kogasa@programming.dev ) 
          link
          fedilink
          English
          3
          edit-2
          1 year ago

          “disk reads” are unavoidable. It’s finding the data in the first place that’s expensive. In an appropriately indexed database, reading a sequential range is extremely efficient. Rather than reading 10,000 times from a hash table, it’s like reading a single table into memory, which is possible because you know in advance that the data you’re looking for is there.

          Bear in mind that indexing a database can include the physical organization of the data on the disk. As a simplified example, if you choose a clustered index based on, timestamp, then selecting data between 2 timestamps is as easy as locating the endpoints and reading the data sequentially off the disk. (The reality is more technically complex, but doesn’t involve much more physical work.)

          • Right! The trivial organization would have been to store comments by timestamp. So in my above example, how would you appropriately index the database such that comments 5, 13, 42, and 57 are stored consecutively, even though other comments to other posts arrive in between?

            •  Kogasa   ( @kogasa@programming.dev ) 
              link
              fedilink
              English
              3
              edit-2
              1 year ago

              If you want to optimize for loading comments in a single thread in a single community in a single server in a federation, then timestamp would be a bad choice.

              A simple example of an index for this use case would be something like (ServerId, ThreadId, Timestamp). By the time you want to load comments in a thread, you know the server id and thread id.

              • Ok, so it is possible to do! I’ve always been suspicious of databases. Loading all comments in a thread is the only thing a reddit clone has to do right. For a popular thread, it may need to be done hundreds of thousands of times (ignoring caching). Everything else, like user pages, is extra. Yet with a database, if instead of a thread I wanted to display comments made every odd Tuesday that have the structure of a haiku, I could. All that power has to be paid for somewhere!

                Maybe I’m just a boomer thinking in terms of spinning rust, when everything is SSDs and 128GB+ of RAM. I wonder - do you think reddit stores its entire 18 years of content in RAM, split or duplicated between shards? But I can’t shake off the awe at the sheer throughput of contiguous read from disk. 10000 comments, 200 characters per comment = 2MB = done in 2ms. Don’t even need 200-at-a-time pagination!

                •  Kogasa   ( @kogasa@programming.dev ) 
                  link
                  fedilink
                  English
                  3
                  edit-2
                  1 year ago

                  Yet with a database, if instead of a thread I wanted to display comments made every odd Tuesday that have the structure of a haiku, I could.

                  You could, but if you want to do it very efficiently and at scale, you would probably need to specialize your data access layer:

                  All that power has to be paid for somewhere!

                  It’s paid for in the logical organization that is enforced at write-time (or during a maintenance task like rebuilding indices or recomputing statistics), where millisecond responsiveness is not as important.

                  do you think reddit stores its entire 18 years of content in RAM, split or duplicated between shards?

                  Lots of duplication across different layers to support different access patterns and reuse work between data retrieval tasks. You need to be able to efficiently access frequently requested data, ingest new data, synchronize data between the different layers, and provide a reasonable minimum efficiency for arbitrary requests.

                  Semi-related, here’s a story about how Discord does it.

                  All that power has to be paid for somewhere!

    • But my fear is that the data structures are implemented in a trivial way. If you have a good reddit-sized thread with a thousand comments, but you store each comment as a separate database entry, then every pageview will trigger a thousand database lookups!

      I mean, I hope that surely can’t be the case. There is no reason why they wouldn’t get all of those comments in a single request even if it were separate rows in the db. I initially thought that they’d have to query each individual instance participating in a thread but even that isn’t the case because the fediverse protocol makes each instance mirror the content from others, meaning that your local instance should already have the necessary data in one place, making it easy to load it to the users.

  • Whatever the performance bottlenecks are, I hope they can get them sorted so that any exponential growth caused by Reddit at the end of the month can be capitalized on.

    I’ve got a feeling that other redditors who want to flee / branch out will look at these sites and so long as they see posts, comments and that it has a decent UI and loads well then people will stick around and build communities here.