•  jadero   ( @jadero@lemmy.ca ) 
    link
    fedilink
    English
    604 months ago

    Ingesting gasoline is deadly in far smaller doses due to something called hydrocarbon pneumonia. My dad very nearly died as a result of having a tiny amount get past his throat while siphoning gas to a small engine’s tank.

    If you must siphon gas, go buy a cheap “pump siphon” from Canadian Tire.

    • You’re confusing 50% lethal dose (medical property of a substance in relation to the body) with death rate (property of a death cause, obtained statistically from a population at a specific time). This is pure medical data which still may be slightly inaccurate, but you can easily check relevant scientific papers for their estimate of the LD₅₀. I think all values presented here are correct within a factor of 2, unless you find a reputable journal stating a very different result. Each substance is available in different concentrations and humans’ exposure to them also varies. You can get lots of pure water, sugar or gasoline easily but not a gram of viruses. Nobody would voluntarily consume a substantial amount of gasoline but nanograms of viruses come and go in the air all the time.

      It is somewhat misleading to group poisons, radioactive isotopes and viruses as they work in very different ways, but the gist is correct. And yes, the LD₅₀ is still a statistical estimate dependent on the humans studied, but not on society etc. like the death rate.

      Edit: some substances will be ejected by the body relatively fast (water), some bioaccumulate (heavy metals) and some “biomutiply” (viruses). This is why you haven’t died despite having drunk lots of water.

      •  hydroptic   ( @hydroptic@sopuli.xyz ) 
        link
        fedilink
        English
        7
        edit-2
        4 months ago

        It is somewhat misleading to group poisons, radioactive isotopes and viruses

        Far as I can tell there aren’t any viruses in there? There’s a few bacterial toxins, but they’re… well, toxins.

        Also, the grouping isn’t misleading. Not only is eg. plutonium fairly toxic (because it’s a heavy metal) in addition to giving off ionizing radiation, but calculating an LD50 for something doesn’t require it to be toxic, just that some dose of it kills. There’s some µg/kg ingested (or inhaled or whatever) dose of polonium that will kill 50% of a study animal population dead, regardless of what the mechanism that kills them actually is

        • You are right, those aren’t viruses. But you can imagine that a virus or prion (like botulinum) might have a very small LD₅₀. I discussed the radioactivity/toxicity in another comment, you are correct - but a tiny amount of any element can quickly kill you from decay radiation if it’s a very unstable isotope.

          And yes, if you understand what LD₅₀ means, the mechanism is the confusing part. Ingesting naturally occuring uranium will not kill you primarily from radiation despite the ☢️ symbol on the infographic, and vitamin D won’t kill you if you only get it from the Sun. And I was primarily correcting the misunderstanding in the above critique, not defending everything about the picture.

      • I legit cannot imagine consuming 1g of THC let alone 1g/kg, you’d literally be eating thousands of gummies if you’re doing edibles (10mg seems to be the strongest edibles I can get) which would be really expensive, rough for a 70kg person would be nearly 9000 10mg gummies which are like $4 cad each, would cost $36,000.

        I guess you could do it, but practically, no one is going to do that much

        •  BCsven   ( @BCsven@lemmy.ca ) 
          link
          fedilink
          English
          24 months ago

          Exactly. just listened to something about the EU allowing a chemical during growing that stunts stalk length so plants are stiffer and lower to grouns for agriculture. US doeant allow it for agriculture but allows import of EU grain. Some articles trying to be alarmist state that urine analyais is ahowing increase in this chemical of people eating breakfast cereal. What the article left out (and podcaster calculated) was you would need to eat 85000kg of oats daily, to sustain a lethal dose.

        • At that point just get a crack spoon, warm up some resin, and go to town on your veins. It’ll be easier, quicker, cheaper, and probably won’t make you want to die from consuming all that food… You’ll still die, just not because you stabbed yourself to relieve the bloating.

    • It’s probably all correct, but super misleading. There’s probably no way to overdose on THC other than drinking loads of highly concentrated oil. Just like there’s no way to overdose on LSD, since it gets taken smaller doses.

      You consume grams of salt, milligrams of meth, vitamin D, …, and micrograms of acid.

      So the important part is “how close is the usual dose people take to the lethal dose, and will your body rebel before you get there (e.g. it’s hard to eat that much salt or drink much water)” or in other words “how likely is it to accidentally overdose”.

    • Death rate is society-dependent. If we only paid with lead coins and never washed our hands, cases of lead poisoning would skyrocket even if the element and our bodies remained the same (and so would LD₅₀). Thankfully, our society knows about the danger and limits the intake of lead to small amounts and/or small concentrations.

    • Looking at the wikipedia page for some of those, it seems to be intravenously. For example, Botox (the last one): “A toxin is 1.3–2.1 ng/kg intravenously or intramuscularly, 10–13 ng/kg when inhaled, or 1000 ng/kg when taken by mouth”

  • This is hilariously bad.

    It doesn’t take into account so many things, and it’s extremely misleading.

    Most of these chemicals don’t ever appear in products in their pure form, so there’s so much here that simply isn’t relevant.

    There’s also consideration here that everything is by weight, and it makes sense to create that as a standard, but many of the pure forms of these items are far more dense than you would expect. One that stands out is uranium. A gram of it would be incredibly small, approximately 0.05 cm cubed. 1 lb is around 1.45" cubed (for my American friends).

    So it would be an insanely small amount. Meanwhile water is insanely light by comparison. While also safer per gram, so it’s an insanely large amount of water before any damage can be done while a relatively small rock of uranium can tear your DNA apart.

    The whole chart is wildly misleading. It might be accurate, though, I have no idea if it is, but the fact is that it makes it seem like normal every day compounds like vitamin B will kill you at lower doses than uranium. While technically true based on weight, it makes uranium seem relatively safe by comparison and bluntly it’s not. Even the smallest amount of pure uranium, which this chart would regard as “safe”, would cause you to become incredibly sick for a very long time.

    I hope nobody gathers “new” information from this chart and decides to do something stupid; but honestly, there’s a lot of idiots in the world, and if anyone is that dumb, I wonder if the average intelligence of the planet might increase a bit.

      • I look at that and I’m not sure that’s right either. Maybe if you took concentrated nicotine extract (pure) and drank it, then yeah, it could become lethal.

        I don’t think anyone can smoke enough cigarettes or vape enough to reach a dangerous toxicity level. I’m pretty sure you’d pass out long before reaching a fatal dose. So the only way you could get to that point is to either inject, ingest or otherwise absorb a lot of nicotine all at once. The usual delivery methods (via the lungs) would probably not work for this. I suppose if you rigged up a continual tobacco burner and hot boxed an area with smoke containing nicotine (either vapor or smoke from burning it), maybe? Or if you slapped on a few dozen nicotine patches after smoking a few packs and went to bed?

        The only other way I can think of to get that much nicotine in you is to buy high concentration vape liquid and drink it; but I’m pretty sure your body would simply vomit it back out and you’d survive. I’m sure it wouldn’t be pleasant, but it wouldn’t be fatal.

        Cocaine on the other hand… I don’t know enough about, but I’m sure people have OD’d on it, so I’m sure there are ways.

      • It’s very likely.

        Everything radioactive is incredibly dangerous.

        I work with WiFi professionally, so I have a pretty good understanding of radio waves from that. On top of that, I’m a radio hobbyist, so I gathered a pretty good understanding of electromagnetic waves and how they operate… Mainly in the context of getting them from A to B successfully, but the physics behind it does not change regardless of frequency.

        While all radio waves can dissipate as heat when absorbed by an object, the wavelength of that signal affects how small of an object it will interact with. Lead is a good example, since it’s a dense lattice of atoms and can interact with most electrical and magnetic fields. Radio waves have a hard time penetrating even a small layer of lead because they’re usually too large of a wave to fit between the atoms. At a certain, very high, frequency, lead gets less effective, and only by making that lead layer thicker and thicker, basically putting the randomness of atom arrangement in the path of the wave, can the signal be stopped.

        When a high frequency wave interacts with flesh, like a person, it will usually penetrate a distance then be absorbed into the material, this is the basic principle that allows x-ray imaging to work. The more dense the material (bones vs muscle and organs and such), the more is absorbed, and you get a dark spot on the resulting image. I won’t get into the development of the images, because they’re usually inverted, that’s a function of photography and how pictures work.

        Taken to the extreme, higher and higher frequency signals, like uranium produces, goes even further, interacting with the atoms that make up your DNA, and destroying them. It’s a gruesome process and it takes a long time before the symptoms of radiation appear, and a very long recovery (or death) in most cases. With uranium, you’d die from radiation long before the toxicity of the uranium can kill you, even if you’re “only” taking .

        Knowing as much as I do, radiation at this level is scary. It’s silent, with no visible indication that it’s happening, and it will kill you dead without any indication it ever existed. It always humors me when people take up arms against some new wireless technology where the principle frequency is under 100Ghz, and people are so afraid of it giving them cancer. The lightbulbs in your house are more apt to give you cancer than 5G or whatever. Light is an electromagnetic wave, the same as the radios in the 5G towers, but light is in the terahertz range, over 500x higher frequency than your wifi. Above that, in terms of frequency is UV-A, UV-B, etc, up to x-rays, and on. Above x-ray, is all the radioactive emissions from uranium, plutonium, etc. Literally thousands of times higher frequency than the evil 5G. EM only becomes ionizing (aka, dangerous) around UV-B, which is why you should always wear sunscreen.

        We (humans) only use higher frequency EM in the context of medical use (cancer treatments, x-rays, etc) in highly controlled environments, and for use in power plants and bombs. I’m sure some industrial uses exist too, but I’ll just skip over that since it usually has the same controls as medical uses. The only other place I know of that we use radioactive material at all is in smoke detectors. We limit it, we regulate it, we keep the stupid public away from it, because they don’t know the danger of such substances.

        Sorry for the rant, but yeah. Holy shit.

  •  Faresh   ( @Faresh@lemmy.ml ) 
    link
    fedilink
    English
    9
    edit-2
    4 months ago

    This looks like a quite useless guide. All these substances appear in vastly different doses in the environment, so it in no way shows what is more likely to kill you or accurately shows what you are supposed to be careful with.

  •  ugh   ( @ugh@lemm.ee ) 
    link
    fedilink
    English
    94 months ago

    Tylenol is easier to overdose on than NSAIDs. I really don’t think this guide is accurate. I’m really questioning the placement of cocaine and especially ketamine. Vitamin D from the sun? Lethal? I don’t believe black widows are that venomous, either. How are they even measuring this? Cocaine will give you a heart attack, Tylenol will shut down your liver, venom acts like an infection… are they basing lethal dose on how much it takes to cause some kind of fatal reaction, or under a controlled administration with a defined “fatal dose” based on a specific measurement, like damage to a human cell?

    •  blindsight   ( @blindsight@beehaw.org ) 
      link
      fedilink
      English
      1
      edit-2
      4 months ago

      I think that you’re missing the dosages. Most of these are orders of magnitude higher than the most someone would consume. Like, the caffeine value per kg of bodyweight is as much as most caffeine addicts likely have in a day. So approximately 2 orders of magnitude higher than how much we consume.

      MDMA is similar. An ecstasy pill is up to 100mg (apparently; I just looked it up), so an adult would need to pop something like 130 pills to hit the LD50.

      Acetaminophen is 500mg/pill, so that’s like a Costco-sized bottle to kill an adult.

      Vitamin D is crazy low. 1000 IU is 25 mcg, so 1000 pills is less than the LD50 for 1 kg of body weight. It’s hardly toxic at all, in the dosages we consume. You’d need to pop multiple cases of bottles of Vitamin D to overdose. All

  •  festus   ( @festus@lemmy.ca ) 
    link
    fedilink
    English
    74 months ago

    What’s the denominator here? Like water is toxic at 90g/1kg, what’s the other 910g? Because I definitely drink over a litre of water a day and I’m doing fine.

    • Depends on the isotope, of course. There are different ways it can hurt you.

      • If you put together a critical mass of ²³⁵U, it undergoes fission and you die in seconds without needing to ingest it.
      • Naturally ocurring uranium (²³³U-²³⁸U, mostly ²³⁸U) has a half-life of billions of years, so it’s very weakly radioactive. It would take a lot of it to harm you from decay radiation. Or very little if you pick a very unstable synthetic isotope outside the 233-238 range (but every element “has” such radioactive isotopes, though not in nature).
      • Uranium is chemically toxic, which is whal will kill you if you ingest a small amount of a common isotope.
      •  Liz   ( @Liz@midwest.social ) 
        link
        fedilink
        English
        14 months ago

        If you’ve got more than 52 kg of uranium 235 on your hands, I would be alarmed to learn you didn’t understand how criticality worked. Although now that I think of it, there’s probably an awful lot of people who indirectly handle that much when they move around a nuclear warhead and most of them probably only had a single lecture on the concept.

        The thing that always blows my mind is just how freaking dense uranium is. A sphere weighing 52 kg is only 17 cm across.

    • I think they are referring to Uranium with natural isotopic abundance. Which is complete bullshit when you put a picture of a nuclear power plant behind it – which in most cases can not function with the natural isotopic abundance (heavy water reactors being the exception, not the rule).